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Mixed-layer deepening due to grid-generated turbulence is studied experimentally 
with the aim of explaining the contradictory results of previous studies. Entrainment 
rates are calculated a t  fixed distances from the grid in order to avoid the necessity 
of using an empirical expression for the decay of the turbulent velocity scale. It is 
shown that an incorrect form of this decay law can cause large errors in the predicted 
Richardson number dependence of the entrainment rate. For this study this 
dependence can be expressed as a power law of the form E = KRi-’.2. The spread of 
the results imply that an error of a t  least f 10 % is realistic in the determination of 
the exponent. 

The turbulent velocity decay law is also deduced from the data, and it is found 
that the decay cannot be represented by a simple power law. Indeed two distinct flow 
regions, with differing decay rates, are present. 

1. Introduction 
The occurrence of relatively sharp density interfaces in the natural environment 

(the thermocline in the ocean and inversions in the atmosphere are examples) has led 
to an interest in the characteristics of interfacial mixing. Much work, involving 
detailed laboratory experiments, has been aimed a t  improving the mixing models 
employed in these situations. 

The system under consideration consists of two fluid layers, one of which is 
quiescent, while the other is stirred by turbulent motion (the mixed layer). Mixing 
between the layers is achieved principally through the activity of this turbulence, 
whose kinetic energy is transformed into a potential energy increase of the stratified 
system, or dissipated by friction. Some studies have concentrated on the turbulence 
generated by a mean shear, perhaps due to a wind stress on the surface of a large 
water body. A second line of research has focused on the turbulence generated with 
no mean shear present, and this has led to a long line of papers, beginning with Rouse 
& Dodu (1955) and Turner (1968), on grid-generated turbulence. Oscillating a 
horizontal grid some distance above or below a density interface has been seen as a 
convenient means of generating zero mean shear turbulence, with the essential 
properties of the turbulence, its length and velocity scales, determined by the grid 
geometry, the amplitude and frequency of oscillation and the distance from the grid. 
However, a number of questions regarding the mixing characteristics of this 
mechanically driven turbulence are still to be answered. 

1.1. Turbulence properties of a n  oscillating grid 
Too few studies have aimed directly at determining the turbulence characteristics of 
an oscillating grid. Fortunately, nearly all studies of this type have used the same 
grid as Turner (1968), or a scaled up version. Thompson (1969) analysed the 
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turbulence created by oscillating grids and bars of various geometries. His results, 
published later in Thompson & Turner (1975), demonstrated that for Turner's 
square-barred grid, the turbulent lengthscale, taken to be the integral lengthscale, 
increased linearly with distance from the grid, while the velocity scale, taken to be 
the root-mean-square of the horizontal velocity fluctuations, decayed with distance 
from the grid to the power of 1.5. Their results also showed that the velocity scale 
was proportional to the frequency of oscillation. 

Hopfinger & Toly (1976) reported a comprehensive study of the turbulence 
properties of two grids, similar to that of Turner (1968). They confirmed the linear 
dependence of the lengthscale of the turbulent motions on the distance from the grid, 
measured from a virtual origin. The determination of this virtual origin is an 
important element in studies of this type. Power-law exponents are known to be 
sensitive to errors in this parameter, and its selection, therefore, must be made in a 
way consistent with other studies. The method chosen by Hopfinger & Toly seems 
least ambiguous. They defined the virtual origin as the height in the fluid a t  which 
the integral lengthscale became zero. This point was found to lie slightly behind the 
grid midplane in its equilibrium position. Their results also demonstrated that the 
constant of proportionality relating the lengthscale to the distance from the grid was 
both stroke and mesh dependent. Their detailed velocity measurements allowed 
them to deduce an empirical relation for the turbulent velocities, depending on the 
frequency and amplitude of oscillation, mesh size and distance from the grid. It is 
given by 

where u is the turbulent velocity scale, f the frequency, S the stroke, M the mesh size 
(i.e. distance between bar centres), and z the distance from a virtual origin. The 
exponent of the velocity decay exhibited some spread, and, for small stroke to mesh 
ratios, an exponent of - 1.25 seemed to be a better fit to the data. Uncertainties in 
the position of the virtual origin were estimated to cause an error in the exponent of 
*4%. The decay of the velocity scale (u cc 2-l) was found to be less rapid than that 
quoted by Thompson & Turner (1975). In  fact, Hopfinger & Toly demonstrated that 
Thompson & Turner's data, €or a square-barred grid, were more accurately 
represented by a 2-l law than a z - ~ . ~  relation. 

McDougall (1979) made careful measurements of the flow generated by Turner's 
grid and showed that the turbulence is far from homogeneous in the horizontal, even 
10 cm away from the grid (his stroke was 1 em). His results also demonstrated that 
an upper frequency limit existed, above which the turbulent velocity scale was no 
longer linearly related to frequency. This cutoff occurred a t  approximately 7 Hz. 

More recently, Hannoun, Fernando & List (1988) have reported a comprehensive 
study of the effect a density interface or rigid boundary has on the turbulence 
generated by an oscillating grid. Using laser-induced fluorescence techniques to 
measure the motions of the interface, and a two-component laser-Doppler 
velocimeter to monitor the turbulent velocities, they were able to deduce energy 
spectra, velocity correlations and kinetic energy fluxes, as well as turbulent 
intensities. Their results demonstrated that the large-scale turbulent eddies are 
flattened in the vicinity of either a rigid boundary or density interface, and energy 
is transferred from the vertical turbulent motions to the horizontal. As the grid used 
by Hannoun et al. (1988) had a different geometry to the square-barred grid 
employed by previous investigators, care should be taken in comparing the measured 
turbulence characteristics. 

Long (1978) published a theoretical model of the turbulence field generated by an 

u = 0.25fS1.5Mo,5~-', (11 
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oscillating grid in a homogeneous fluid. This model predicts that the turbulence may 
be characterized as a single quantity called ‘grid action’, proportional to the product 
of the turbulent lengthscales and velocity scales, and therefore representing some 
form of turbulent diffusivity. The results of Dickinson & Long (1978, 1983) lend 
support to the concept of grid action, and confirm the theoretical prediction that the 
turbulent layer, in a homogeneous fluid, grows as the square root of time. 

1.2. Entrainment across a density interface and its Richardson number dependence 

In addition to these studies, much work has concentrated on the entrainment rate 
across a density interface, and its dependence on a Richardson number, based on the 
turbulence properties at the position of the interface, if the interface were not 
present. The Richardson number represents a measure of the relative importance of 
buoyancy to inertial forces (implicitly assuming that viscosity plays no role in the 
mixing process), and is defined by Ri = gApl/pu2 where g is the gravitational 
acceleration, A p  the density jump across the interface, 1 the turbulent integral 
lengthscale, and p the density of the mixed layer. Systems have been studied where 
the quiescent layer is either homogeneous or linearly stratified. Details of these 
studies can be found in Turner (1968), Linden (1975), Wolanski & Brush (1975), 
Hopfinger & Toly (1976), McDougall (1978), Folse, Cox & Schexnayder (1981), 
Fernando & Long (1983, 1985), E & Hopfinger (1986) and Hannoun & List 
(1988). 

Despite this concentrated experimental effort, no consensus has been reached on 
a universal relationship between the Richardson number and the entrainment 
velocity, u,, defined as the rate a t  which the interface between the two layers 
advances into the quiescent layer. There are three conflicting hypotheses. The first 
favours a power-law dependence of the following form: 

> (2) E = KRi-1.75 

where E is the ratio of the entrainment velocity to the turbulent velocity scale, and 
K is constant. The work of Fernando & Long (1983, 1985) offers convincing 
verification of this relationship, while the results of Folse et al. (1981) also give 
moderate support to its validity. However, this latter study considered the mixing 
due to a finely woven mesh, not a grid. 

The second group proposes a relationship of the form: 

E = KRi-1.5, (3) 

This particular relation is strongly supported by the results of E & Hopfinger (1986), 
and Wolanski & Brush (1975), and to a lesser extent by the work of Turner (1968) 
and Hopfinger & Toly (1976). The results of the two latter studies yield exponents 
only approximately equal to - 1.5, although they are certainly closer to this value 
than to - 1.75. Turner found that the entrainment rate was the same, whether one 
or both of the two fluid layers were stirred. This important observation lends strong 
support to the proposition that mixing at the interface takes place intermittently, 
and rarely enough for the mixing events on each side of the interface to be treated 
independently. Hannoun & List (1988) also support (3), although for practical 
reasons they were only able to cover half an order of magnitude variation in 
Richardson number. 

Finally, McDougall (1978) presents experimental evidence that suggests that the 
magnitude of the exponent in (3) is considerably less than 1.5. In  fact, he deduces an 
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exponent of -1.08. In support of this result he demonstrates that a best fit to 
Turner’s (1968) results, for Ri > 5, yields an exponent of - 1.31, not - 1.5 as is 
commonly quoted. In  conclusion, he suggests that a value of - 1.2k0.12 may be a 
better estimate of the exponent. 

It is thc rnisfortunc of the modeller wishing to  choose between these three 
expressions, that the first two entrainment relations have theoretical support. Long 
(1978) has presented a complicated theory of the mixing process in a stratified 
system, based on the concept of the intermittent breaking of internal waves in the 
interfacial region between the mixed and quiescent layers, which predicts the 
entrainment relation expressed in ( 2 ) .  I n  contrast, Linden (1973) has suggested a 
simple model in which the mixing takes place during the recoil of the interface, 
following its interaction with a turbulent eddy. To support his theory, Linden 
conducted some elegant experiments in which vortex rings, intended to simulate 
turbulent eddies, collided with a density interface. His calculations support the 
second entrainment law given in (3). E & Hopfinger (1986) point out that it is 
somewhat surprising that these two theories, both of which contend that the mixing 
is controlled by the buoyancy timescale of the disturbed interface, and not the eddy 
overturn timescale, do not yield identical results. Recently Hannoun & List (1988) 
have proposed a theory similar to that of Long, based on an oceanic mixing model 
of Phillips (1977). While the concept of local internal wave breakdown is also central 
to their model, detailed differences between their theory and Long’s (the dependence 
ofthe wave velocities and interfacial thickness on Richardson number) result in their 
model supporting (3). 

Further work is needed if the cause of the discrepancy between these three 
entrainment laws is to be resolved. This study sets out to achieve this aim, and 
comparison will be made continually with the results of Fernando & Long, and E & 
Hopfinger, as the two principal proponents of the first two power laws, and 
McDougall. Perhaps the only conclusion that can be drawn from the completed work 
in this field, is that  grid-generated turbulence and its use as a tool in mixing studies 
is considerably more complex than might be expected. 

In  the future is is likely that more sophisticated experimental techniques, such as 
those used by Hannoun and his collaborators, will be needed to resolve the issue. 
However it appears that  more information can still be gained from simple 
experiments of the type used in the majority of previous studies. At a fixed distance 
from the grid the turbulent velocity scale and lengthscale are constant, if unknown. 
Measurements of the entrainment rate as a function of the density difference between 
the layers then will yield the required entrainment law to within a numerical 
constant. This technique reduces the need for direct turbulence measurements. This 
is the approach first used by Turner (1968), although his main interest was the 
influence of molecular processes on the entrainment rate, and he did not vary the 
distance from the grid at which his measurements were made nor did he vary the 
stroke. If an assumption regarding the growth of the turbulent lengthscale is made 
then the technique employed in this study also allows the decay rate of the velocity 
scale to be deduced. 

Section 2 describes the experimental apparatus and procedures used in the present 
study, and includes an outline of the data analysis method. The experimental results 
are presented in $ 3  where the deduced entrainment and velocity decay laws are 
discussed. Also included in this section is a brief discussion of the effect of having the 
grid placed near a solid boundary. Finally $4 summarizes the results and attempts 
to use the conclusions reached to understand the discrepancy in previously published 
results. 
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2. Experimental apparatus and procedures 
Figure 1 shows a schematic representation of the experimental configuration. The 

Perspex experimental tank was 25.4 ern square, and 60 cm deep. It therefore had the 
same horizontal cross-section as the tank used by Turner (1968). The grid was also 
identical to Turner’s, with 1 ern square bars at 5 em centres. The grid was positioned 
in the bottom layer of fluid, and driven from below by a Scotch yoke attached to a 
small electric motor, whose speed of rotation was monitored by a photoelectric cell. 
Both the stroke, and the grid’s position above the bottom of the tank were 
adjustable. 

Common salt was always the stratifying agent, with red food dye occasionally 
added to the bottom layer for visual effect. 

The depth of the mixed layer was determined by measuring the density of the 
bottom-layer fluid as top-layer fluid was entrained across the interface. Other 
experimenters have calculated the depth from shadowgraph records of the motion in 
the tank, but this is particularly difficult when the interface is very active. Bottom- 
layer fluid was withdrawn from the flow through a stainless steel probe, of 1.2 mm 
inside diameter, by the action of a peristaltic pump. The fluid passed through an 
Anton Parr density meter and returned to the tank via another length of 
hyperdermic tubing. The two probes were always placed slightly above the highest 
position reached by the grid. A flow rate of less than 6 ml/min was required to ensure 
that the density measurement was accurate, and this guaranteed that the withdrawal 
of fluid had no effect on the flow, except in the vicinity of the probe. 

The voltage output from the density meter was logged continually by a 
microcomputer, giving a continuous record of density against time. All of the 
subsequent analysis of the data was performed on the microcomputer, or by hand. 

The measured densities were converted to salt concentrations from standard tables 
(Weast 1984). If the interfacial layer thickness h, is assumed to be negligibly small, 
the mixed-layer depth (the mixing process is assumed to be one-dimensional and 
therefore the mixed-layer depth represents a spatial average) may be deduced from 
the conservation of salt in the bottom layer. Thus 

where B is the product of the initial salt concentration and height of the interface 
above the tank bottom, c, is the salt concentration in the bottom layer, and D’ 
and zO are defined in figure 1. The entrainment velocity u, is therefore given by 
dD’/dt . 

The derivative, dD’/dt ,  was calculated in two ways. Firstly, a smooth curve was 
drawn through the function D’ = D‘(t) and a derivative was calculated by 
constructing a tangent to the line. Secondly, the derivative was calculated as a 
function of time on the microcomputer using linear interpolation between adjacent 
points. (Note that in a typical experimental run between 1000 and 2000 density 
measurements were taken.) These two methods generally gave values for u, to better 
than 10% accuracy. Only for small Richardson numbers, when entrainment was 
rapid, were the derivative estimates less reliable than this and generally these results 
were not retained for future analysis. 

Other studies have suggested that the interfacial layer is not negligibly thin. The 
work of Crapper & Linden (1974) and Fernando & Long (1985) showed that h / D  
(both h and D are defined in figure 1) is constant, with a value of approximately 0.1. 

7-2 
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FIGURE 1. The experimental configuration represented in schematic form. 

In contrast, E & Hopfinger (1986) found h / D  to be Richardson number dependent, 
taking a value of about 0.06 for very large values of Ri, and increasing as Ri 
decreased. Further debate has been fuelled by the results of Hannoun & List (1988) 
that show h / D  decreasing with Richardson number, from a value of about 0.014 a t  
Ri = 25 down to values as small as 0.003 for a Richardson number of about 100. For 
interfaces this thin, molecular transport will become important. 

These contrasting results leave the effect of assuming a negligibly thin interfacial 
layer rather uncertain. If the results of Hannoun & List are correct then this 
approximation will lead to accurate estimates of the true entrainment velocity, at 
least over the range of Richardson numbers covered in their experiments. On the 
other hand, if the interface is a finite but constant proportion of the mixed-layer 
depth then the ratio of dD/dt  to dD/dt will be constant and the use of dD/dt  will 
not effect the functional form of the deduced entrainment law. Only if the thickness 
of the interface changes significantly with Richardson number will errors arise in the 
deduced form of the entrainment relation. Throughout this study dD/dt  is used to 
calculate the entrainment velocity but the consequences of D / D  being Richardson 
number dependent will be discussed in $3.1. 

As mentioned in the introduction the principal difference between the present 
study ‘and the major studies of E & Hopfinger (1986), and Fernando & Long (1983, 
1985) is the method of analysing the data. By measuring the entrainment a t  a fixed 
distance from the grid there is no need to resort to empirical expressions for the 
velocity scales and lengthscales of the turbulent motions. Turner (1968) used the 
same technique, withdrawing fluid from the bottom layer in order to keep the 
interface at a fixed level. In this study the interface is allowed to move away from 
the grid, and a number of runs, with varying initial density differences, are made 
with the same amplitude and frequency of oscillation. The entrainment rates for one 
particular mixed-layer depth can then be collated from all runs, and an entrainment 
relation deduced (see $2.1). 

The turbulent velocity decay is of paramount importance in determining the 
functional form of the entrainment velocity’s dependence on Richardson number. If 
E is assumed to be proportional to Ri-’.5 then u, cc u4, while u, cc u4.5 if E cc Ri-1.75. 
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A small error in the assumed form of u(z) will cause a significant error in the deduced 
entrainment law. This will be clearly demonstrated in $3.2. 

The velocity decay law also may be found from the method of analysing the data, 
described above. By collapsing the entrainment relations obtained for a number of 
mixed-layer depths, the variation of the turbulent velocity with distance from the 
grid is obtained (see §2.1), provided the growth rate of the turbulent lengthscale with 
distance from the grid is assumed. 

The frequency of oscillation was set a t  4 Hz for all runs. It is generally 
acknowledged that the velocity scale is linearly proportional to frequency, as any 
other relationship would demand, for dimensional reasons, the appearance of the 
viscosity in the expression for velocity. Therefore, there seemed little point in 
varying this parameter. However, the stroke was varied, taking five different values 
between a minimum of 0.77 cm, and a maximum of 4.9 cm. 

The effect of varying the distance from the grid to the bottom of the tank, zo, was 
also briefly investigated. It was hoped that this would offer some insight into the 
manner in which the presence of a solid boundary affects the distribution of 
turbulent kinetic energy in the tank. 

The turbulent motions in a homogeneous fluid were observed by seeding the fluid 
with neutrally buoyant fish scales and illuminating the tank from both sides through 
vertical 1 cm wide slits. When the fluid is quiescent the light reflected by the scales 
is of uniform intensity. Turbulent motion is identified by the appearance of light and 
dark patches in the fluid. 

2.1. Data analysis 

The extraction of the important experimental results from the experimental data is 
briefly discussed in this section. While no fundamental reason exists for a power 
dependence of the entrainment velocity on Richardson number, the experimental 
evidence published so far strongly supports this relationship, provided Ri is not too 
small. Therefore the entrainment law may be written as 

U 

Again, purely empirical evidence suggests that  the turbulent lengthscale is linearly 
related to the distance from the grid and that the velocity decay law may be well 
represented by a power law relation. Thus 

1 = pz,  (6) 
-a 

u=Afs[;] , (7)  

where A ,  and Z do not depend on z .  A is dimensionless, and may be a function of 
the ratios of the various lengthscales in the system, the stroke, mesh size and bar 
thickness. It may be Reynolds number dependent also, although this would require 
an f / v  (where v is the kinematic viscosity) dependence. As a result u is no longer 
proportional to f to the first power, in disagreement with the results of McDougall 
(1979) and Thompson &, Turner (1975) for the same grid. The Reynolds numbers of 
our flows were generally larger than those of McDougall and Thompson & Turner and 
therefore an Re dependence is unlikely. Even so, if A is Re dependent, provided this 
dependence can be expressed as a power law the form of the z-dependence in (7) is 
unchanged. 
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p, which is dimensionless, and 2, which has the dimensions of length, may depend 
on the same three lengthscales as A .  A linear relation between the lengthscale of the 
turbulence and the distance from the grid, measured from a virtual origin (taken to 
be the middle of the grid in its equilibrium position), is widely accepted. Thompson 
& Turner (1975) give 0.1 as the constant of proportionality, and this seems valid for 
small strokes. The results of Hopfinger & Toly (1976) suggest that this constant is 
dependent on the stroke and mesh size. For the results presented here, 1 = 0.1D' is 
used for all strokes. This assumption has no effect on the deduced forms of the 
entrainment law or velocity decay law, as the results for each stroke are considered 
separately, However, if the velocity dependence on stroke is to be deduced from the 
present measurements (see 53.4) the stroke dependence of /3 must be known. 

If the product fS = u,, is used as the velocity scale a t  all levels in the flow, then the 
entrainment relation may be expressed as 

where y = a ( l + 2 n ) ,  Ri* = (Apgl/pui) and C is a constant depending upon A and K .  
Taking the logarithm of equation (8) yields: 

InE* = 1nC-n InRi*-y In - . [;I (9) 

When lnE* is plotted against In Ri* (Ri* is calculated with 1 = 0.12 for all strokes) 
a series of straight lines will be obtained, corresponding to the entrainment relations 
for each mixed-layer depth. The slope of each line yields an estimate of the exponent, 
n. For one particular stroke the value of Z is fixed. Therefore, the value of y may be 
obtaincd by calculating the x-axis translation required to collapse all of the 
entrainment curves onto a single line. Thus 

lnE* = 1nC'-n lnRi*', (10) 

where lnRi*'=InRi*+-ln - . z [6] 
C' is a constant depending on C and Z ,  and x* is the mixed-layer depth corresponding 
to the reference line on to which all the other curves have been collapsed. If the x- 
axis translation is designated f ( x ) ,  then the velocity decay power, a ,  is calculated 
from the slope of a plot of nf(z)/(2n+ 1) against In ( z / z* ) .  

It has been noted in the introduction that all distances from the grid are measured 
relative to a virtual origin. While it is true that the resulting power law exponents 
are quite sensitive to the choice of virtual origin, a number of studies have found that 
it is very close to the midplane of the grid in its equilibrium position, that is, halfway 
between the two extreme positions of its motion. The calculations described in this 
paper abide by this convention. 
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Run number 

NV2 
NV3 
NV4 
NV5 
NV6 
NV7 
NV8 
NV9 
NVIO 
NV11 
NV12 
NV13 
KVI4 
KV16 
NV17 
pu’V18 
NV19 
NV20 
NV2 1 
NV22 
NV23 
NV24 

Range of D‘ 
Stroke (em) 4 0  20 (cm) (cm) 

3.22 0.022 7.5 11-15 
1.6 0.0069 7.5 6 1  1 
1.6 0.012 7.5 6 1  1 
1.6 0.0032 7.5 7.5-1 1 
1.6 0.024 7.5 6-10 
1.6 0.045 7.5 6-10 
1.6 0.0050 7.5 7-10 
1.6 0.0013 7.5 9.5-1 1 
2.4 0.0094 11.25 8-1 1 
2.4 0.038 11.25 6-1 1 
2.4 0.075 11.25 6-10 
2.4 0.020 11.25 7-1 1 
2.4 0.113 11.25 6-9.5 
0.77 0.0031 3.84 &lo 
0.77 0.001 1 3.84 6.5-10 
0.77 0.0023 7.55 6-10 
3.22 0.051 11.12 7.5-15 
3.22 0.011 11.12 9-15 
3.22 0.097 11.12 7.5-15 
4.9 0.052 19.55 12-22 
4.9 0.081 19.55 12-22 
4.9 0.144 19.55 12-22 

TABLE 1. The experimental data for all runs 

n 

1.26 
1.26 
1.22 
1.43 
1.11 
1.08 
1.35 

1.61 
1.22 
1.12 
1.37 
1.06 
1.17 
1.18 
1.21 
1.25 
1.22 
1.21 
1.25 
1.42 
1.36 

- 

3. Results 
Table 1 lists the experimental parameters for each run. 

3.1. Entrainment relation 

The results for a stroke of 1.6 cm (runs NV3-NV9) are presented in figure 2. E* is 
plotted against Ri* on log-log paper and a series of lines is obtained, corresponding 
to the entrainment relations at  various distances from the grid. For each mixed-layer 
depth, the straight lines on the log-log plot were calculated by a least squares best 
fit to the data. The exponent of the power law relation between the non-dimensional 
entrainment velocity, and the Richardson number is calculated from the slope of 
each of the lines drawn. Figure 3 presents the values of n as a function of distance 
from the grid, deduced from the results for all strokes. 

For practical reasons, only for strokes of 1.6, 2.4 and 3.22 ern was it possible to 
cover an order of magnitude or more variation in Richardson number. The results for 
these three strokes yield mean values of the exponent, n, of 1.18, 1.22 and 1.23 
respectively. The line marked Nokes in figure 3 represents an average of these values. 
Clearly, while these results are internally consistent, the predicted reduction in 
entrainment rate with Richardson number fails to agree with either the results of E 
& Hopfinger, or Fernando & Long, although it is in agreement with the suggestion 
of McDougall. 

There is considerable scatter in the values of n obtained for each mixed-layer 
depth. Combining the results for these three strokes, n is found to vary between 1.04 
and 1.31, This spread does not appear to be entirely random, as would be expected 
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rn D‘ = 6.0 cm 
D’=6.5cm . D’ = 7.0 cm 
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FIGURE 2. For a stroke of 1.6 ern (runs NV3-NV9) the entrainment relations for various distances 
from the grid are presented. The lines represent least squares best fits to the results at each height. 
Their slopes are given in figure 3. Both E* and Ri* have been non-dimensionalized by the velocity 
UO. 

2.0 

Fernando & Long 

+ 
.I 

0 Nokes 

1.5 E & Hopfinger 

1.0 - 

S=0 .77cm 
S = 1 . 6 c m  

+ S = 2 . 4 c m  
A S =  3.22cm 

5 10 15 20 

D‘(cm) 

FIGURE 3. The exponent of the entrainment relation, n, given as a function of mixed-layer depth. 
The results for all strokes are included, and the predictions of E & Hopfinger (1986) and Fernando 
& Long (1983, 1985) are also illustrated. 

if it were due solely to experimental scatter. The results for each stroke show a 
tendency for n to decrease as the mixed-layer depth increases, the result for S = 1.6 
cm and D’ = 11 .O cm being the exception. A possible explanation for this is that the 
relationship between E and Ri is not an exact power law, and that a plot of E against 
Ri on a log-log plot will yield a line with some curvature. To be consistent with the 
falloff of n with increasing D’, the slope of this curve would need to be less negative 
for greater values of Ri. It will be seen that when all of the results are collapsed onto 
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one entrainment curve, the experimental scatter smothers any sign of this curvature. 
The presence of significant molecular transport a t  high Richardson numbers, as 
suggested by the results of Hannoun & List (1988), is another possible reason why the 
value of n becomes less negative as Ri increases. 

The results for strokes of 0.77 and 4.0 em are also presented in figure 3. For these 
two strokes a variation in Ri of only about a factor of 3 could be obtained. Because 
of this, the slopes of the curves on a log-log plot were poorly constrained, and the 
calculated values of n less reliable. It can be seen in figure 3 that the results for 
the small stroke are consistent with the results already discussed (mean value of 
n = 1.22), while those for the largest stroke exhibit considerable scatter with a mean 
value of 1.34. 

The results presented in figure 3 would suggest that the error in determining the 
correct value of n is a t  least f 10 %. 

We now return to a point discussed briefly in $ 2 .  By assuming that the interfacial- 
layer thickness is a constant proportion of the mixed-layer depth, D is always a fixed 
fraction of D’, and the calculated entrainment velocity is proportional to.the true 
value of u,. However, if the results of E & Hopfinger (1986) are correct, D/D’ varies 
with Richardson number, decreasing as Ri decreases. When considered in the light 
of the present method of analysis, the effect of this is twofold. Firstly, the 
entrainment velocity for small Richardson numbers is overestimated by the present 
analysis. As a consequence, the lines plotted in figure 2 have their slopes increased. 
Secondly, the lines in figure 2 no longer correspond to constant values of D. Instead, 
the value of D for small Richardson numbers is less than that for larger values, and 
the slope of a line of constant D will be greater than that of a line of constant D‘. Both 
effects result in a smaller value of n than that given by assuming D/D’ is constant. 
It is important to recognize that a Richardson number dependence of D/D’ does not 
help, in any way, to reconcile the results of the present study with those of E & 
Hopfinger, and Fernando & Long. Rough calculations, using the results of E & 
Hopfinger as a guide, suggest that n may be overestimated by about 10% by 
assuming that D / D  is independent of Ri. 

A comparison with the results of Turner (1968) is essential, as his experimental 
configuration was, in essence, the same as that described in $ 2 ,  and, in addition, his 
entrainment relation was deduced from measurement a t  a fixed distance from the 
grid. While the value of n deduced from his measurements is quoted as 1.5, a least 
squares best fit demonstrates that it is significantly less, as was first recognized by 
McDougall (1978). Using the data points with a Richardson number greater than 5 
(see figure 9.3 Turner 1973), yields a value of n equal to 1.34. This difference can be 
seen in E & Hopfinger’s (1986) figure 4 ( a ) ,  where Turner’s data are compared with 
their own, and the two data sets have different slopes. 

Turner’s results should agree with the conclusions of this study, because of the 
close similarity in the experimental configurations and analysis methods. His data do 
exhibit more scatter than the results of this study, and thus may be less precise. 
However, the discrepancy offers further insight into the accuracy to which the 
exponent of the entrainment relation can be deduced from experiments of this kind. 
An error of f 10 % in calculating the exponent, as suggested above, is probably a 
lower bound. 

3.2. Velocity decay law 
The curves drawn in figure 2 all correspond to the same entrainment law. Only the 
relative turbulent velocities at  each distance from the grid are unknown. As 
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FIGURE 4. The entrainment curves (like those in figure 2) are collapsed onto the D‘ = 8 cm curve 
by a translation in the z-direction, f(z). nf(z)/(Zn+ 1 )  is plotted against non-dimensional distance 
from the grid. The slope of the data is a, the negative of the velocity decay law exponent. 

demonstrated in 3 2.1, the velocity decay with z may be calculated by collapsing these 
curves onto a single line. The curve for D‘ = 8 cm was taken as the reference line 
( z*)  in all cases except for S = 4.9 cm, when D’ = 15 cm was selected. The function 
nf(z)/(Sn+ l), defined in $2.1, is plotted against In ( i z )  in figure 4. As the slopes of the 
curves in figure 2 vary somewhat, the translation in the x-direction, necessary to 
collapse the data, was determined by eye. 

For strokes of 1.6, 2.4 and 3.22 cm the results are consistent with a decay law of 
valid for 6 < D’ < 12 cm. The actual slopes for these three strokes are 1.52, 1.51 

and 1.46. At a distance of approximately 12 or 13 cm the results for S = 3.22 em 
show a marked decrease in the slope of the data, although more results further from 
the grid would be needed to determine accurately its new value. 

The results for the largest stroke, 4.9 cm, which have been presented in figure 4 by 
equating the value of nf(z)/(2n+ 1) a t  z = 13 cm with that for a stroke of 3.22 cm, 
show a velocity decay of the form Z - O . ~ ~ .  This apparent change in the decay law 
implies that a universal power law, as suggested by Hopfinger & Toly (1976), may 
not be valid. The decay of velocity for a 0.77 cm stroke has a form close to that of 
the largest stroke, namely z-*-*, although in this case the power law is valid between 
D’ = 6 cm and D’ = 10 cm. 

In an attempt to ascertain, a t  least qualitatively, a reason for the existence of a 
number of velocity decay laws, apparently stroke- and z-dependent, the turbulent 
motions generated by the grid in a homogeneous fluid were observed by seeding the 
flow with neutrally buoyant, microscopic fish scales. The resulting turbulent motions 
are identified by light and dark patches in the flow when the tank is illuminated 
through 1 cm slits on each side of the tank. Figure 5 illustrates the observed motion 
for a stroke of 2.4 cm and a frequency of 4 Hz. 

Two distinct regions exist. The first, near the grid, is quite coherent, and appears 
to have the form of a number of turbulent wakes. Beyond this region, and separated 
from it by an ill-defined boundary, is a zone of incoherent turbulent motions with 
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FIGURE 5 .  The turhulent motions generated by the grid, with a 2 4 cm stroke and frequency of 
4 Hz, in a homogeneous fluid seeded with fish scales and illuminated through 1 ern wide slits. 
Regions of strong turbulent activity, in the form of turbulent wakes, can be seen near the grid, 
extending approximately 10 cm from the virtual origin. The divisions on the left of the photograph 
are a t  1 cm intervals. The bottom arrow on the left of the photograph marks the grid’s mean 
position and the top arrow identifies its position a t  the top of its stroke. The photograph was taken 
with a 1 second exposure. 
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apparently no mean horizontal structure, extending to the top of the tank. The 
approximate position of the boundary between these two flow regions was estimated 
from observations of the flow field. For strokes of 1.6, 2.4 and 3.22 cm this boundary 
was located approximately 10-13 om from the grid midplane, apparently inde- 
pendent of the stroke. Because of the considerably more vigorous motions 
associated with a stroke of 4.9 cm, the limit of the coherent zone was difficult to 
determine. However, it  was estimated to be, if anything, a little closer to the grid 
than that for the three smaller strokes. Finally, with the smallest stroke, S = 0.77 
em, the zone nearest the grid was found to extend barely 3 or 4 cm from the grid 
midplane. 

A number of tentative conclusions may be drawn from these qualitative results. 
Firstly, two distinct regions appear to exist in the turbulent flow field. Near the grid 
the turbulence exhibits a definite horizontal structure, while further from the grid 
the turbulent motions have little or no mean horizontal variation. The transition 
between these zones appears to be relatively rapid, and for strokes larger than the 
bar size, the transition level is between 10 and 13cm from the virtual origin, and 
essentially independent of stroke. Secondly, these observations are supported by the 
deduced velocity decay which demonstrates a definite change in the decay law 
approximately 12 cm from the grid midplane. The results presented in figure 4 also 
show that, provided the stroke is greater than the bar size, the velocity decay law has 
a z-dependence independent of stroke. Thus it may be concluded that 2, defined in 
equation (7), depends only on the grid geometry. Finally, the observations predict 
that the velocity decay between z = 6 and z = 10 cm, for the smallest stroke, should 
be like that in the incoherent region. This is in fact the case. The data for S = 0.77 
em, presented in figure 4, show a gradual decay of velocity with z ,  with a slope of 
approximately 0.8. 

The changing form of the turbulent flow structure causes some concern with regard 
to the mixing results when it is remembered that horizontal homogeneity has been 
implicitly assumed. It would be expected that the mixing characteristics of the two 
flow regions would be quite different, and that only the results obtained outside the 
zone characterized by the coherent wake structures would be meaningful. However 
the results of this study (see figure 3) strongly support the conclusion that the rate 
of interfacial mixing has the same Richardson number dependence whether or not 
the turbulence is laterally completely homogeneous, provided that representative 
velocity and lengthscales are used to specify the turbulent motions. Certainly the 
results for the smallest stroke, all of which were obtained in the absence of the wake 
structures, yield the same Richardson number dependence as the results with the 
larger strokes, which were obtained within the laterally heterogeneous region. 

The entrainment curves for each stroke were collapsed onto one curve using the 
deduced velocity decay law. Figure 6 shows the results for strokes of 1.6 and 3.22 cm 
(2 and ffi are defined such that the turbulent velocity scale is equal to uo at 
z = 8 cm and the velocities a t  other levels in the flow are calculated relative to this 
value using the deduced velocity decay law). In  all cases no more than a 1 %  
difference was found between the slope of the combined curve, and the average slope 
of the curves for different mixed-layer depths. The entrainment results for each 
experimental run were rescaled with the deduced velocity decay law, resulting in a 
value of n being calculated for each run. These values are listed in table 1. A 
considerable spread is obtained, with all of the results except one (NVIO) lying within 
the limits 1.06 < n < 1.43. The trend referred to  in $3.1 is again identifiable, with the 
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FIGURE 6. (a )  The entrainment relation obtained for a stroke of 1.6 cm, once the results for all 
mixed-layer depths have been collapsed on to one curve. The slope of the line is -1 .17.  (b)  The 
entrainment relation obtained for a stroke of 3.22 cm, once the results for all mixed-layer depths 
have been collapsed on to one curve. The slope of the line is - 1.23. Run NV2 was performed with 
zo = 7.5 em, while the remaining three runs had z,, = 11.25 cm. 

exponent taking larger values than the mean for small Richardson numbers, and 
smaller values for large Ri. 

This spread may be compared with the errors quoted by E & Hopfinger (1986). The 
value ofn  obtained from 3 runs with a stroke of 2 em was 1.40+0.15, and that from 
3 runs with a stroke of 8.5 cm was 1.45 2 0.05. The derivation of these error estimates 
is not explained in the paper, but certainly the spread seems similar to that obtained 
here. 

Generally it has been assumed that the Reynolds number of the turbulence is 
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FIGURE 7 .  The results for runs NVl9-NV21 re-analysed with a velocity decay of 2-l .  The 
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F ~ G U H E  8. The results of runs liV16-NV18 demonst,rate the effect of' positioning the grid close t o  
the bottom boundary. The grid was 3.84 cm from the tank bottom for runs NVi6 and NV17. This 
distance was increased to  7.55 c m  for run KV18, and the entrainment rate decreased for constant 
Ri. 

constant, implying that the velocity decays like z - l ,  provided that the turbulent 
lengthscale grows linearly with z .  This decay is certainly significant different from 
that deduced from the results of this study. To illustrate the effect of an incorrect 
decay law the results for runs NV19-NV21 were replotted, assuming the velocity 
decayed like z-l .  The results are presented in figure 7 .  The power law exponents 
calculated from these curves arc: - 1.94, - 1.8 and - 1.88, and the three curves can 
be seen to fall on distinct lines. We concludc that an incorrect decay law has a 
significant effect on the exponent deduced for the entrainment relation. 
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3.3. The eaect of a bottom boundary 

The distribution of turbulent kinetic energy in the flow is determined by the power 
input of the grid, the dissipation rate, the rate at which the potential energy of the 
system is increasing and the volume of water surrounding the grid. When the grid is 
placed close to the bottom boundary the volume of fluid is effectively reduced and 
the distribution of the turbulent energy will be affected. To test the importance of 
this the distance zo was varied for two strokes. The results for runs NV19-NV21 were 
analysed together, as zo, the distance from the grid to the tank bottom, was 11.25 
cm in all three cases. Using the deduced velocity decay law, the results of run NV2, 
for which zo = 7.5 em, were analysed. As can be seen in figure 6(b), the results for 
NV2 lie on almost the same curve as the results for the other three runs. I n  this case 
the effect of the bottom boundary is insignificant. This result confirms that the 
bottom boundary has had no effect on the results for the two smaller strokes, 
S = 1.6 ern and S = 2.4 cm. 

Runs NV16 and NV17 were both performed with the grid midplane 3.84 cm from 
the tank bottom. 2, was increased to 7.55 ern for run MV18 and it was found that the 
entrainment rates dropped somewhat (see figure 8). The presence of the bottom 
boundary has affected the intensity of the turbulent motions, but their rate of decay 
has remained essentially unchanged ; a conclusion supported by the fact that the 
same velocity decay rate yields the same slope for the entrainment relation, even 
though zo has been altered. 

I n  the experimental configurations of E & Hopfinger (1986) and Fernando & Long 
(1983, 1985) the grid was positioned in the top fluid layer, approximately 1 mesh size 
below the free surface. Although a free surface, with its ability to absorb energy as 
surface waves, will not affect the distribution of turbulent kinetic energy as much as 
a solid boundary, the effect of varying zo may still be important in these studies. 

3.4. The absolute entrainment law and the velocity dependence on stroke 

Unfortunately, absolute turbulent velocity measurements could not be made. The 
constant of proportionality in the relation between E and Ri, when these quantities 
are expressed in terms of the actual turbulent velocities, can be achieved only by 
resorting to the measurements of other experimenters and for this purpose the results 
of McDougall were used. 

According to the results of Hopfinger & Toly (1976) @, the constant relating the 
turbulent lengthscale to the distance from the grid, increases approximately linearly 
with stroke. The results for strokes of 1.6 and 2.4 cm in the present study imply that 
the ratio l/u2 is independent of stroke. If this is assumed to be valid for a stroke of 
1 em also (the stroke used in MeDougall’s experiments), by using Hopfinger & Toly’s 
results for the increase of /I with stroke the turbulent velocities measured by 
McDougall may be used to calibrate the present experiments for a stroke of 1.6 em. 
A collapse of the results for the remaining strokes is then accomplished by translating 
the relative entrainment curves onto the absolute relation deduced for a 1.6 cm 
stroke. The resulting entrainment relation is plotted in figure 9. It is best expressed 
as 

E = 0.15Ri-1.21. (12) 
The value for K of 0.15 is more than an order of magnitude less than that quoted 

by E & Hopfinger (1986), although it must be remembered that, in a power law 
relation of this kind, valid for Richardson numbers up to several hundred, the value 
of K depends strongly on the exponent. For instance, if the results from this study, 
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FIGURE 10. The dimensionless constant A ,  divided by the value for S = 1.6 cm, is plotted 
against stroke. 

and those of E & Hopfinger’s were assumed to coincide a t  Ri = 50 (a typical value 
for the range covered), the K-value associated with an exponent of - 1.21 would need 
to be more than a factor of 3 less than that associated with an exponent of - 1.5. 
Indeed, E & Hopfinger (1986) point out that the deduced value of K should not be 
given undue weight, because of the high power with which the velocity enters the 
expression for u, (see 92). Turner’s (1968) results, quoted in this book, Turner (1973), 
have been non-dimensionalized with Thompson’s velocity measurements. Using 
these, instead of McDougall’s, would double the value of K given in equation (12). 

The stroke dependence of the turbulent velocity scale was deduced from this final 
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collapse of the entrainment relations for each stroke, by using the linear dependence 
of on stroke, derived from the results of Hopfinger & Toly (1976). This dependence 
is contained in the non-dimensional constant A ,  defined in (7). This quantity, divided 
by its value for a stroke of 1.6 cm, is plotted against stroke in figure 10. As they stand 
the results demonstrate that the stroke dependence of the velocity cannot be 
represented by a simple power law. 

4. Discussion 
The results of this study have failed to verify the exponents in either of the 

power law entrainment relations proposed by Fernando & Long (1983, 1985) or E & 
Hopfinger (1986). However, it is in agreement with the suggestion of McDougall 
(1978). The results suggest a decrease in the non-dimensional entrainment velocity 
with increasing Richardson number of the form, E cc It is felt that these 
results have been obtained in the most consistent way, by analysing together the 
data obtained a t  a fixed distance from the grid. This precludes the necessity of 
employing an empirical relation for the velocity decay. 

The sensitivity of the entrainment relation to the assumed form of the velocity 
decay has been stressed throughout this paper. An error in the magnitude of the 
velocity results in an incorrect estimate of the constant of proportionality, K ,  while 
an incorrect exponent in the velocity decay law causes a significant error in the 
deduced exponent of the entrainment relation. It is therefore risky to accept an 
empirical expression for the turbulent velocity, particularly if this expression has 
been obtained from measurements in a different experimental configuration to the 
one in which the mixing rates are being obtained. It should be noted also, that while 
Hopfinger & Toly (1976) quote a velocity decay of 2-l their results exhibited some 
spread. In particular, for a small stroke to mesh ratio they found the decay was closer 
to z-1.25 , a t  least up to 20 cm from the grid. This result was not used in the later paper 
of E & Hopfinger (1986) although a small stroke of 2 em was used. This marginally 
different exponent in the velocity decay certainly would have decreased the 
magnitude of n. 

It is the conclusion of this study that errors in the assumed form of the turbulent 
velocity scale may be the cause for the discrepancy between the entrainment 
relations deduced by different researchers. Furthermore, the errors associated with 
the exponent, n, are not negligible, and the uncertainties in determining this 
quantity are likely to be a t  least 10-15%. 
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